Table I. Optical Rotation for 1sophorone Oxide Prepared in a Confined Vortex and Simple Centrifuge ${ }^{a}$

horizontal (centrifuge) ${ }^{b}$		vertical clockwise ${ }^{\text {b }}$		vertical counterclockwise ${ }^{\text {b }}$	
product rotation $24^{\circ}, 546.1 \mathrm{~nm}, \mathrm{mdeg}$	average rotational rate, rpm	$\begin{gathered} \text { product rotation } \\ 24^{\circ}, 546.1 \mathrm{~nm} \text {, mdeg } \\ \hline \end{gathered}$	average rotational rate, rpm	$\begin{gathered} \text { product rotation } \\ 24^{\circ}, 546.1 \mathrm{~nm}, \text { mdeg } \\ \hline \end{gathered}$	average rotational rate, rpm
$+0.2 \pm 0.3$	10900	$+9.0 \pm 0.2$	8600	-2.6 ± 0.2	10800
-0.2 ± 0.2	11500	$+5.9 \pm 0.2$	7700	-2.5 ± 0.2	10500
-0.3 ± 0.4	10500	$+12.8 \pm 0.3$	9500	-2.2 ± 0.2	10600
-0.9 ± 0.4	11600	$+9.8 \pm 0.4$	8900	-1.0 ± 0.7	10400
-0.9 ± 0.5	14300	$+17.2 \pm 0.6$	11000	-3.1 ± 0.7	11000

${ }^{a}$ Errors are standard deviations for repeated measurements on the same sample. ${ }^{b}$ Spinning attitude.

Caution note: A number of tubes exploded during the course of these experiments. Precautions were taken to confine the explosions in a hood.

In a typical experiment ${ }^{2}$ isophorone (7.6 g) was mixed with 30% hydrogen peroxide (15.8 mL) and methanol (55 mL) and a total of 6 mL of 6 N NaOH was added in $2-\mathrm{mL}$ aliquots at the start of the reaction and at 20 and 40 min . It was necessary to increase the gas pressure to maintain a constant spinning rate as an emulsion formed roughly 1 h after the reaction was started and the resulting increase in turbulence in the vortex slowed the spinning rate. Small leaks in the Teflon seal for the tube often resulted in a loss of material during the reaction. These losses occurred in all three spinning attitudes.

After a standard cleanup ${ }^{2}$ optical rotations for the products were measured as described elsewhere. ${ }^{3}$

Table I presents the product optical rotations and timeaveraged rotational rates for five experiments each in the horizontal, vertical clockwise and vertical counterclockwise spinning attitudes.

The optical rotations for the vertical clockwise experiments are well beyond experimental error.

The horizontal spinning attitude is achiral as the axis of the earth's gravitational field and the axis of the momentum due to spinning are perpendicular to each other. The results from these experiments are entirely in accord with bench controls for the same reaction ${ }^{3}$ and confirm the notion that achiral physical fields cannot induce asymmetric synthesis.

The optical rotations for the products of the vertical counterclockwise experiments are roughly half an order of magnitude smaller than those of the corresponding clockwise spinning experiments. The motion of molecules in the interior of the clockwise vortex constitutes a P helix from the top to the bottom of the tube while the motion of molecules at the walls of the tube describes an M helix from the bottom of the tube to the top. This motion is coincident with the motion that would be caused by the combination of g or anti- g forces and the earth's coriolis force in the Northern Hemisphere. The motion of molecules in the counterclockwise confined vortex is the opposite of this and would be contragradient to the combination of g and coriolis forces. This may explain the difference between the results for the clockwise and counterclockwise spinning experiments. If this explanation is correct, the results for the two experiments should reverse on moving to a corresponding latitude in the Southern Hemisphere.

The results reported above demonstrate that it is possible to obtain asymmetric synthesis with chiral gravitational fields alone. Inasmuch as the space-time metric is chiral, it is conceivable that prebiotic organic synthesis could have been partially asymmetric as a result of being conducted in a chiral gravitational field.

Acknowledgment. It is a pleasure to acknowledge useful discussions with J. J. Katz and A. Garay and the technical assistance of J. D. Roberts and P. Bretton.

References and Notes

(1) Dougherty, R. C. J. Am. Chem. Soc., preceding paper in this issue.
(2) Wasson, R. L.; House, H. O. 'Organic Synthesis'; Wiley: New York, 1963; Coll. Vol. IV, p 552.
(3) Piotrowska, K.; Edwards, D.; Mitch, A.; Dougherty, R. C. Nature (London), submitted for publication.

Deborah Edwards, Keith Cooper, Ralph C. Dougherty*
Department of Chemistry, Florida State University Tallahassee, Florida 32306

Received March 22, 1979

Mechanism of Metallotropic Shifts in Fluxional Monohaptocyclopentadienyl Metal Derivatives ${ }^{1}$

Sir:

It has been clear for about 10 years that the fluxional character of monohaptocyclopentadienyl metal derivatives results from degenerate metallotropic migration. That the latter is intramolecular and is specific (rather than random) remains in no doubt, but, despite all that has been written on the subject, ${ }^{2}$ no direct way has been devised for distinguishing NMR resonances due to the two different types of olefinic ring nuclei. Without this differentiation, definitive evidence for a 1,2 (equivalent to 1,5) rather than the alternative 1,3 migration has remained elusive, although the former is strongly indicated by coalescent behavior in ${ }^{13} \mathrm{C}$ NMR spectra of chiral silylcyclopentadienes ${ }^{3}$ which show anisochronous behavior among the relevant ring carbon atoms. We believe that we are now in a position to end speculation on this subject.

In a chiral compound, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Si}^{*} \mathrm{XYZ}$, as well as resulting in diastereotopic shifts among the C_{5}-ring nuclei ${ }^{3}$ it is possible that molecular asymmetry may result in anisochronicity within the migratory group ($\mathrm{Si} * \mathrm{XYZ}$). Indeed we have already reported ${ }^{3}$ one such species, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Si}(\mathrm{H})(\mathrm{Cl}) \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ where the α (methylene) protons of the trimethylsilylmethyl substituent will in principle exhibit such an effect; however the ${ }^{1} \mathrm{H}$ resonances due to these nuclei are completely obscured by the silylmethyl signal. Convinced that identification of such diastereotopic shifts might prove to be the key to resolving the rearrangement mechanism, we have pursued this problem using ${ }^{13} \mathrm{C}$ NMR spectroscopy. Appropriate alkyl substituents at a chiral silicon center include isopropyl (anisochronous methyl carbon atoms) or cyclopropyl and cyclohexyl (anisochronous 2-methylene carbons).

Reaction of isopropylmagnesium bromide with excess methyldichlorosilane over 24 h at $30^{\circ} \mathrm{C}$ gave in low yield ($\sim 10 \%$) (isopropyl)methylchlorosilane (1) which in a reaction with potassium cyclopentadienide at $-78{ }^{\circ} \mathrm{C}$ afforded ${ }^{4}$ (isopropyl)methylsilylcyclopentadiene ($2, \sim 75 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum of this compound at $-40^{\circ} \mathrm{C}$ consisted of the following signals: $\tau 3.46,\left(4, \mathrm{~m}, \mathrm{aa}^{\prime} \mathrm{bb}^{\prime}\right), 6.35,(1, \mathrm{br} \mathrm{m}, \mathrm{SiH})$, 6.57, (1, br m, x) $8.72,\left(1, \mathrm{~m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 8.99$ ($6, \mathrm{CH}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 10.26,\left(3, \mathrm{~d}, \mathrm{SiCH}_{3}\right)$ (where $a a^{\prime}$ bb'x denote the C_{5}-ring protons). On warming to ambient temperature successive collapse of the resonances at $\tau 3.46$ and 6.57 occurred to give a broad, averaged low-field signal. During 2 h at $25^{\circ} \mathrm{C}$

Figure 1. Temperature dependence of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2, 0-150 ppm. (For experimental details see ref 2 and 3.)
progressive isomerization via prototropic shifts ${ }^{2}$ was characterized by accumulation of doublets at $\tau 9.95$ and 9.87 due to $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ protons in the 2 - and 3 -silyl compounds, respectively.

The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2 at $-40^{\circ} \mathrm{C}$ is summarized in Table I and its temperature dependence is illustrated in Figure 1. The low-frequency region (Figure 2) was unequivocally assigned from a spectrum recorded without proton decoupling on the basis of multiplet structure due to $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)$ spin coupling: the pair of lines at $\delta 18.7$ and 18.4 split into overlapping quartets $\left({ }^{1} J\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)=126.0\right.$ and 128.3 Hz$)$, that at 13.5 into a doublet $\left({ }^{1} J\left({ }^{1} \mathrm{H}^{13} \mathrm{C}\right)=117.4 \mathrm{~Hz}\right)$, and that at -10.1 ppm into a quartet of doublets $\left({ }^{1} J\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)=120.7\right.$, $\left.{ }^{2} J\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)=7.7 \mathrm{~Hz}\right)$. Thus these resonances belong, respectively, to isopropyl β-carbon, (anisochronous pair) isopropyl α-carbon, and silylmethyl carbon atoms. The highfrequency region consisted of four lines due to the $\mathrm{C}_{2,5}$ and $\mathrm{C}_{3,4}$ pairs of the C_{5} ring ${ }^{5}$ (diastereotopically shifted by 0.7 and 0.3 ppm). On warming, these signals collapsed asymmetrically with that at $\delta 47.6\left(\mathrm{C}_{1}\right)$, but, during this coalescence, the shift

Figure 2. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2, - $15-40 \mathrm{ppm}$.
between the two resonances due to the anisochronous pair of β-carbon atoms in the substituent isopropyl group was maintained. In fact, the low-frequency portion of the spectrum (Figure 2) remain unchanged throughout the temperature range investigated (-50 to $+60^{\circ} \mathrm{C}$). We conclude the migration of the silyl group occurs without inversion at silicon, the first time the stereochemistry of such a rearrangement has been established.

The implications of this observation seem to us to be far reaching. Configurational stability at the silicon center during migration is consistent only with a concerted process. A heterolytic dissociative mechanism provides access to inversion which would result in loss of anisochronicity while lack of rate dependence on concentration or solvent precludes the corresponding homolytic dissociation. Identification of a 1,2 (equivalent to 1,5) shift with retention in compound 2 provides a compelling comparison with the characterization by Slutsky and Kwart^{6} of a thermal [1,3] rearrangement of allylsilanes with inversion at temperatures above $500^{\circ} \mathrm{C}$. Invoking wellknown arguments based on the criteria of Woodward and Hoffmann ${ }^{7}$ for sigmatropic transformations, in a cyclopentadiene system ${ }^{8}$ a $[1,5]$ shift results in retention of configuration whereas inversion accompanies the alternative [1,3$]$ migration. Anastassiou has emphasized the significance of frontier orbital symmetry in describing sigmatropic migrations in odd-membered monocyclic π systems in terms of distortions from regular polygonal geometry in corresponding radicals. ${ }^{9}$ This approach leads to the same conclusion since the symmetry properties of the pertinent orbital ψ_{3} for the five-membered ring system imply no change of configuration during a $[1,5]$ shift with inversion for the $[1,3]$ alternative. Thus we suggest that the mechanism resulting in the fluxional nature of com-

Table I. Proton Noise-Decoupled ${ }^{13} \mathrm{C}$ NMR Spectrum of ($i-\mathrm{Pr}$)(Me)(H)SiC5 H_{5} (2) at 233 K

chemical shifts, $\mathrm{ppm}^{\text {a }}$			
C (olefinic)	C (tertiary)	$\mathrm{C}(\text { isopropyl })^{b}$	$\mathrm{C}\left(\right.$ methyl) ${ }^{\text {b }}$
$\left.\begin{array}{l} 133.4(74) \\ 132.7(64) \\ 130.6(100) \\ 130.3(97) \end{array}\right\}$	$47.6(61)$	$\begin{aligned} & \left.\begin{array}{l} 18.7(69) \\ 18.4(73) \\ 13.5(65) \end{array}\right\} \end{aligned}$	-10.1 (17)
${ }^{a} \mathrm{CDCl}_{3}$ used heights are show spin-coupling ch ${ }^{\text {c }}$ Resonances due	solvent and in parenth racteristics in to anisochron	erence through ${ }^{b}$ Assigned th ondecoupled sp pairs of ${ }^{13} \mathrm{C}$ nu	; relative peak ugh $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)$ rum; see text i; see text.

pound 2 (and indeed perhaps all related monohaptocyclopentadienyl metal compounds ${ }^{10}$) is correctly termed a concerted [1,5] metallotropic rearrangement with conservation of orbital symmetry.

Acknowledgment. We thank the National Research Council, Canada, and the University of Victoria for financial support and Mr. G. Trump for experimental assistance.

References and Notes

(1) Stereochemically Nonrigld Silanes, Germanes, and Stannanes. 7. Part 6: Bonny, A.; Stobart, S. R. J. Chem. Soc., Dalton Trans., in press.
(2) Bonny, A.; Stobart, S. R.; Angus, P. C. J. Chem. Soc., Dalton Trans. 1978, 938 , and references therein. For a review see Cotton, F. A. In "Dynamic Nuclear Magnetic Resonance Spectroscopy'", Jackman, L. M., Cotton, F. A., Eds.; Academic Press: New York, 1975.
(3) Bonny, A.; Stobart, S. R. J. Am. Chem. Soc. 1979, 101, 2247.
(4) Compound 1 has been synthesized previously: Dolgov, B. N.; Borisov, S. N.; Voronkov, M. G. Zh. Obshch. Khim. 1957, 27, 2062. Found; bp 95-97 ${ }^{\circ} \mathrm{C}$. This material and compound 2 were thoroughly characterized using IR and mass spectroscopy as well as by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR measurements.
(5) Assignment of the pair of lines at higher frequency and showing the larger diastereotopic splitting to $\mathrm{C}_{2,5}$ is consistent with our earlier conclusions: ${ }^{2,3}$ thus chlorine substitution at Si to give $\left(\mathrm{R}(\mathrm{H})(\mathrm{Cl}) \mathrm{Si}^{*} \mathrm{C}_{5} \mathrm{H}_{5}{ }^{3}\right.$ results in a diamagnetic shift of $\mathrm{C}_{2,5}$ to a position of low frequency of $\mathrm{C}_{3,4}$. It can be seen from the comparison of the present data with those of ref 3 that replacement of alkyl by chlorine at Si also magnifies anisochronous effects. It follows that the unsymmetrical collapse in this region shown in Figure 1 is in accordance with a 1,2 (or 1,5) shift.
(6) Slutsky, J.; Kwart, H. J. Am. Chem. Soc. 1973, 95, 8678.
(7) Woodward, R. B.; Hoffmann, R. J. Am. Chem. Soc. 1965, 87, 2511.
(8) In which antarafacial migrations cannot occur.
(9) Anastassiou, A. G. Chem. Commun. 1968, 15.
(10) The boat configuration and axial metal substitution established by X-ray crystallography for $\mathrm{Ph}_{3} \mathrm{SnC}_{7} \mathrm{H}_{7}$ (Weidenborner, J. E.; Larrabee, R. B.; Bednowitz, A. L. J. Am. Chem. Soc. 1972, 94, 4140) clearly constitute a favorable arrangement for an analogous suprafacial $[1,5]$ shift in this fluxional cycloheptatriene system.

Rupert D. Holmes-Smith, Stephen R. Stobart* Department of Chemistry, University of Victoria Victoria, British Columbia V8W 2 Y2

Received July 30, 1979

${ }^{1} \mathrm{H}$ NMR Assignment of the $\mathrm{C}-5$ ' Protons of B_{12} Coenzyme and the Synthesis of B_{12} Coenzyme Chirally Labeled in the C-5' Position

Sir:
In the course of our study on the mechanism of action of the coenzyme B_{12} dependent enzyme dioldehydrase, we synthesized B_{12} coenzyme chirally labeled in the $\mathrm{C}-5^{\prime}$ position, To confirm the synthesis of chiral B_{12} coenzyme and subsequently to follow its fate in the enzymatic reactions, it was essential to have the correct NMR assignments for the C-5' protons. These protons are directly involved in the enzymic reaction. Unfortunately, some uncertainty exists in the literature regarding these assignments. Based on model compound studies, Cockle et al. ${ }^{1}$ have tentatively assigned these two protons to be at 0.6 and 0.9 ppm from DSS in $\mathrm{D}_{2} \mathrm{O}$. Brodie and Poe^{2} have assigned these two protons to broad resonances at ~ 0.57 and 1.1 ppm in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$. However, in a study of the ${ }^{1} \mathrm{H}$ NMR of [$5^{\prime}-$ ${ }^{13} \mathrm{C}$]adenosylcobalamin, Hogenkamp ${ }^{3}$ was unable to observe the expected ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ spin-spin coupling. From this data, he concluded the peaks at 0.6 and 1.1 ppm are not due to the $\mathrm{C}-5^{\prime}$ protons.

To aid in the assignments, we have used $\left[5^{\prime}, 5^{\prime}-{ }^{2} \mathrm{H}_{2}\right.$] adenosylcobalamin. ${ }^{4}$ The spectrum of that compound, as well as that of nonisotopically labeled cobalamin, is shown in Figures 1 A and 1 B . The spectrum of the nonisotopically labeled coenzyme shows a triplet at 0.6 and a doublet at 1.56 ppm which are not present in the spectrum of the deuterated coen-

Figure 1. A: 2 mM adenosylcobalamin in $\mathrm{D}_{2} \mathrm{O}$. B: $2 \mathrm{mM}\left[5^{\prime}, 5^{\prime}-{ }^{-2} \mathrm{H}_{2}\right]$ adenosylcobalamin in $\mathrm{D}_{2} \mathrm{O}$ (it contains contaminants from paper chromatography). C: $2 \mathrm{mM} 5^{\prime}$-chiral $\left[5^{\prime}-{ }^{2} \mathrm{H}\right]$ adenosylcobalamin in $\mathrm{D}_{2} \mathrm{O}$. The insert in the upper right-hand corner is an expanded spectrum ($5.4 \times$) showing the regions of the $\mathrm{C}-5^{\prime}$ protons. The NMR spectra were taken with a $270-\mathrm{MHz}$ NMR spectrometer at a probe temperature of $20^{\circ} \mathrm{C}$ built by A.R. ${ }^{12}$
zyme. It is, therefore, reasonable to assign these peaks to the C-5' protons.

To confirm these assignments, we have undertaken decoupling experiments. Irradiation at 0.6 ppm changes the doublet at 1.56 ppm into a singlet, and, conversely, irradiation at 1.56 ppm changes the triplet at 0.6 ppm into a doublet. This finding clearly indicates the two peaks in question are spin-spin coupled with each other. With decoupling techniques, we are also able to assign the $\mathrm{C}-4^{\prime}$ proton. Irradiation at 2.6 ppm causes the triplet at 0.6 ppm to change into a doublet. This suggests the $\mathrm{C}-4^{\prime}$ proton resonates at 2.6 ppm . These results then confirm our assignment for the two prochiral C-5' hydrogens.

Figure 1 C shows the spectrum of the coenzyme synthesized from ($5^{\prime}-R$) $-\left[5^{\prime}-{ }^{2} \mathrm{H}\right]$ adenosine. ${ }^{5,6}$ The absorption at 0.6 ppm is missing and there is now a singlet at 1.56 ppm . These results establish that no significant racemization occurred during the

